Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase.
نویسندگان
چکیده
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μM at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μM ATP (<>Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.
منابع مشابه
Energy flow in biological system: Bioenergy transduction of V1-ATPase molecular rotary motor from E. hirae
We classify research fields in biology into those on flows of materials, energy, and information. As a representative energy transducing machinery in biology, our research target, V1-ATPase from a bacterium Enterococcus hirae, a typical molecular rotary motor is introduced. Structures of several intermediates of the rotary motor are described and the molecular mechanism of the motor converting ...
متن کاملCrystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor
V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the pre...
متن کاملMutant LV476-7AA of A-subunit of Enterococcus hirae V1-ATPase: High affinity of A3B3 complex to DF axis and low ATPase activity
Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble functional domain V1 (A3B3DF) and an integral membrane domain Vo (ac), where V1 and Vo domains are connected by a central stalk, composed of D-, F-, and d-subunits; and two peripheral stalks (E- and G-subunits). We identified 120 interacting residues of A3B3 heterohexamer with D-subunit in DF heterodimer in the crystal st...
متن کاملLoose Binding of the DF Axis with the A3B3 Complex Stimulates the Initial Activity of Enterococcus hirae V1-ATPase
Vacuolar ATPases (V-ATPases) function as proton pumps in various cellular membrane systems. The hydrophilic V1 portion of the V-ATPase is a rotary motor, in which a central-axis DF complex rotates inside a hexagonally arranged catalytic A3B3 complex by using ATP hydrolysis energy. We have previously reported crystal structures of Enterococcushirae V-ATPase A3B3 and A3B3DF (V1) complexes; the re...
متن کاملSequencing and characterization of the ntp gene cluster for vacuolar-type Na(+)-translocating ATPase of Enterococcus hirae.
We have previously reported the DNA and amino acid sequences for the three genes (ntpA, ntpB, and ntpK) encoding the A, B, and K (proteolipid) subunits, respectively, of Na(+)-translocating ATPase of a eubacterium Enterococcus hirae (Kakinuma, Y., Kakinuma, S., Takase, K., Konishi, K., Igarashi, K., and Yamato, I. (1993) Biochem. Biophys. Res. Commun. 195, 1063-1069). In this paper we report th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 288 45 شماره
صفحات -
تاریخ انتشار 2013